Application of DNB for air quality and fire monitoring
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Use of EPA Remote Sensing Information Gateway
to deliver VIIRS AOD/PM, ; data products

RSIG Data Flow Diagram
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Current satellite WCS:
» MODIS C6 (10 km, 3 km, DB)
> CALIOP, GASP (GOES AOD)
> Prototype NOAA-VIIRS

Establish OGC compliant Web
Coverage Service (WCS ) between
PEATE and RSIG to add NASA- VIIRS
data (This project). --- Done !!!

GEOS-Chem scaling factors used to
create a daily Look-Up-Table (LUT)
of the spatial varying relation of
AOD and PM, . (van Donkelaar et.
al., 2012, ES&T) .

Prototype use of AOD-to-PM2.5
scaling factors via regional models
(WRF-CMAQ & WRF-CHEM) and
explore ensemble type approach
(This project).



Summary

— Data flow from UW-SIPS (Science Investigator Processing System) to EPA’s RSIG
is implemented, tested, and successful. ARL4->ARL-7

— Evaluation of ensemble approach for surface PM2.5 estimates from VIIRS and othei
satellite projects is conducted for June 2012. This would provide insight on the
selection and improvement of operation approach for remote sensing of surface
PM, .. ARL2->ARL3

— Refinement of Hierarchical Autoregressive Model has started in EPA site. ARL5-
>ARL7



Developed and implemented operational PEATE-RSIG WCS using MODO04; to be
switched to VIIRS data products when final file format implemented on PEATE
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Potential application of VIIRS Day/Night Band for monitoring
nighttime surface PM; 5 air quality from space
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HIGHLIGHTS

¢ VIIRS Day/Night Band (DNB) is much more sensitive to aerosols than to water vapor

e Modeling of outdoor light transfer in nighttime atmosphere for VIIRS DNB

e DNB potential for estimating surface PM, 5 is shown qualitatively and quantitatively

e PM> 5 at VIIRS night overpass time is much closer to daily-mean PM, 5 than at daytime
e Strategies for future DNB remote sensing of aerosols are elaborated



National Ambient Air Quality Standards

Pollutant Primary/ Averaging Faval
[final rule cite] Secondary Time
Carbon Monoxide S—— 8-hour S ppm
[76 FR 54294, Aug 31, 2011] P Y = 35 ppm
> Rolling 3
Lead primary and 3 (1)
[73 FR 66964, Nov 12, 2008] secondary SRElan 9.15 pg/m
average
Nitrogen Dioxide primary 1-hour 100 ppb
[75 FR 6474, Feb 9, 2010] primary and 12 ug/ms, -
[61 FR 52852, Oct 8, 1996] secondary FR, 15 Jan. 2013 [P
Ozone primary and g 3)
[73 FR 16436, Mar 27, 2008] secondary 2l Q-2 Bpm
3
| PMo.< primary and |Annual 15 pg/m
Particle Pollution . secondary =
[Z1 FR 61144, 24-hour 35 pg/m
Oct 17, 2006] primary and
PM E 3
10 secondary 24-hour 150 ug/m
Sulfur Dioxide primary 1-hour 75 ppb “
[Z5 FR 35520, Jun 22, 2010]




NAAQS uses daily and annual averages of PM, .
Can we use DNB to estimate surface PM, ; at night?

At night, aerosols are often mixed in a shallow nocturnal boundary layer.

Retrieval of AOD from DNB is still in its infancy; preliminary work include Zhang et al.
(2008) and Johnson et al. (2013).

We like to make a first attempt to apply DNB for night time PM, . air quality.
Aug — Oct 2012. Focus area: Atlanta

PM, .: 5 ug/m3 PM, .: 13 ug/m3
2.5 2.5

VIIRS DNB, 8 Sep. 2012




Is DNB sensitive to aerosol, water vapor, & O,

Normalized Response
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Lamp Radiance (W/m? /sr/nm)
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DNB is most sensitive to change of AOD
but, water vapor effect is also not negligible
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The database of spectral intensity emitted from HPS, fluorescent, and LED bulbs
are from Elvidge et al., (2010).

In the U.S., high- pressure sodium lamps (HPS) are the most common type of light
source used for outdoor applications (Rea et al., 2009)



VIIRS overpass time at night
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PM, . at VIIRS night
overpass time is more
representative daily-mean
PM, - than at noon time
(VIIRS daytime overpass)




Regression analysis

Among surface wind speed, surface pressure, and columnar water vapor
amount) that are routinely measured at the surface, the DNB light intensity
is the only variable that shows either the largest or second largest
correlation with surface PM:s.

Table 2. Correlation coefficients (R) between PM; sxf(rh)/u and different variables at 6 ground
sites (A-F as described in Table 1 and marked in Figure 2)'.

A B C D E F(CTR)
Variables\R
Inl -0.78 -0.56 -0.53 -0.39 -0.71 -0.73
APs 0.05 0.21 0.08 0.14 0.10 0.10
W 0.49 0.38 0.85 0.17 0.00 0.10
Uxf(rh)/n -0.21 -0.08 -0.21 -0.30 -0.60 -0.66
Vx{(rh)/u 0.59 0.49 0.48 0.53 0.54 0.52

'At each site, the largest value is in bold and second largest value is in the italic bold



Leave-one-out cross validation of regression model

optical model regression meteo. variable regression
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VIIRS-based optical model gives better estimate of surface PM, ; than
meteorology-based regression.
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1 Improving Nocturnal Fire Detection
2 With the VIIRS Day—Night Band

3 Thomas N. Polivka, Jun Wang, Luke T. Ellison, Edward J. Hyer, and Charles M. Ichoku

4  Abstract—Building on existing techniques for remotely sensing
5 fires via satellite, this paper takes advantage of the day—night band
6 (DNB) aboard the Visible Infrared Imaging Radiometer Suite
7 (VIIRS) to develop the Firelight Detection Algorithm (FILDA),
8 which characterizes fire pixels based on both visible-light and
9 infrared (IR) signatures at night. By adjusting fire pixel selection
|0 criteria to include visible-light signatures, FILDA allows for sig-
|1 nificantly improved detection of pixels with smaller and/or cooler
|2 subpixel hotspots than the operational Interface Data Processing
|3 System (IDPS) algorithm. VIIRS scenes with near-coincident Ad-
|4 vanced Spaceborne Thermal Emission and Reflection (ASTER)
|S overpasses are examined after applying the operational VIIRS fire
|6 product algorithm and including a modified ‘“‘candidate fire pixel
|7 selection” approach from FILDA that lowers the 4-pum brightness
|8 temperature (BT) threshold but includes a minimum DNB radi-
|9 ance. FILDA is shown to be effective in detecting gas flares and
'0 characterizing fire lines during large forest fires (such as the Rim
!1 Fire in California and High Park fire in Colorado). Compared with
12 the operational VIIRS fire algorithm for the study period, FILDA
13 shows a large increase (up to 90%) in the number of detected fire
'4 pixels that can be verified with the finer resolution ASTER data
!5 (90 m). Part (30%) of this increase is likely due to a combined use
'6 of DNB and lower 4-p2m BT thresholds for fire detection in FILDA.
'7 Although further studies are needed, quantitative use of the DNB
'8 to improve fire detection could lead to reduced response times to
19 wildfires and better estimate of fire characteristics (smoldering
j0 and flaming) at night.

that, despite improving warning systems [1], [2], have exacted 38
greater costs in recent years [3], [4]. In addition, they im- 39
pact global atmospheric chemistry by releasing potent trace 40
gases such as carbon monoxide, carbon dioxide, methane, and 41
ethene [5], as well as aerosols and black carbon [6]. These by- 42
products of combustion are capable of traveling great distances 43
and impacting health and meteorological processes in remote 44
locations [7], [8], and in addition to creating local pollution 45
hazards, these can affect Earth’s climate [9]. Fire-spawned 46
smoke aerosols have complex interactions with the atmosphere 47
by causing a reduction in surface illumination [10]-[12] and 48
simultaneously warming the atmosphere, thereby decreasing 49
vertical temperature gradients and increasing atmospheric sta- 50
bility [13] due to their relatively low single-scattering albedo 51
[14]. As a consequence of wildfire lethality and potential 52
for property damage, earlier detection of wildfires via remote 53
sensing is paramount to proper allocation of fire manage- 54
ment resources [15], [16]. Effective response to all of these 55
phenomena requires accurately detecting and characterizing 56
fires as well as accurately quantifying emissions from biomass 57
burning. 58

The launch of the Suomi National Polar-orbiting Partnership 59
(S-NPP) aatellite an 2R Oetaher 2011 hac anened nn nnnrece- AN



First fire detection from space
was from visible light at night...

.Bummg_Waste Gas in Oil Flelds

o L WAS TeC ntly amazed by some mght-tune spacecut‘t photo-
< .gra phs, mphﬁed by Fig-'1, that present graphic evidence
. »of waste and: pollution. - These were ‘obtained: by the United

States Air Force DAPP system which has sensors in the visible
0.4 to 1.1 ym band and an infrared imaging system in the 8.to

« T. A. Croft, Nature, 1973.

Such agricultural “Fires, invisible by day, are seen
ranging all around ... at night (when) we were literally
surrounded by them; some smouldering, ... others
fitfully bursting forth, whilst others again stalked
along with a steadily increasing and enlarging
flame...” Hooker (in 1846), cited by Croft, 1973.




Nighttime Images
of the Earth from Space

An unusual aspect of the earth is revealed in pictures recorded
at midnight by U.S. Air Force weather satellites. The brightest
lights on the dark side of the planet are giant waste-gas flares

by Thomas A. Croft

THREE MAJOR LIGHT SOURCES associ-ated with
human activities are visible in this nighttime satellite
image ...

the upper third of this picture are the city lights of
Europe.

The larger isolated lights near the middle and bot-tom
arise from gas flares at oil fields in Al-geria, Libya and
Nigeria.

The uniform band of smaller lights scattered across
Africa south of the Sahara appears to originate with
agricultural and pastoral fires.

Scientific America, 1978.




Recent work of using shortwave IR (1.6 um) for
night fire detection

C. D. Elvidge, M. Zhizhin, F.-C. Hsu, and K. E. Baugh, “VIIRS
nightfire: 1333 Satellite pyrometry at night,” Remote Sens., vol. 5,
no. 9, pp. 4423-4449, 1334 Sep. 2013, doi: 10.3390/rs5094423.

W. Schroeder, P. Oliva, L. Giglio, and I. A. Csiszar, “The new VIIRS
375 m active fire detection data product: Algorithm description

and initial assessment,” Remote Sens. Environ., vol. 143, pp. 85—
96, Mar. 5, 2014, doi: 10.1016/j.rse.2013.12.008.



Correction of pixel overlaps
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Firelight Detection Algorithm (FILDA)
Combined use of Vis + NIR + IR to detect fires

IDPS AFARP FILDA
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Evaluation with ASTER
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Potential characterization of smoldering vs. flaming
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Case Analysis




City lights enhance the signal for detecting PM, . changes.
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Using moonlight alone to detect PM2.5 appears very challenging.



